New results on the conjecture of Rhodes and on the topological conjecture
نویسنده
چکیده
Margolis, S.W. and J.E. Pin, New results on the conjecture of Rhodes and on the topological conjecture, Journal of Pure and Applied Algebra 80 (1992) 305-313. The Conjecture of Rhodes, originally called the ‘type II conjecture’ by Rhodes, gives an algorithm to compute the kernel of a finite semigroup. This conjecture has numerous important consequences and is one of the most attractive problems on finite semigroups. It was known that the conjecture of Rhodes is a consequence of another conjecture on the finite group topology for the free monoid. In this paper, we show that the topological conjecture and the conjecture of Rhodes are both equivalent to a third conjecture and we prove this third conjecture in a number of significant particular cases. 1. The conjecture of Rhodes and the topological conjecture In this paper, all semigroups (respectively monoids, groups) are finite except in the case of free monoids or free groups. If M is a monoid, E(M) (respectively Reg(M)) denotes the set of idempotents (respectively regular elements) of M. If x E M, x”’ denotes the unique idempotent of the subsemigroup of M generated by X. A block-group monoid is a monoid in which every Z-class and every Z-class contain at most one idempotent. A number of equivalent conditions are given in [7]. For instance, a monoid M is a block-group monoid if and only if, for every regular $-class D of S, the semigroup D” is a Brandt semigroup, or if and only if 0022-4049/92/$05.00
منابع مشابه
Some difference results on Hayman conjecture and uniqueness
In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
متن کاملWiener Way to Dimensionality
This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...
متن کاملDecomposition of H*-Algebra Valued Negative Definite Functions on Topological *-Semigroups
In the present paper, among other results, a decomposition formula is given for the w-bounded continuous negative definite functions of a topological *-semigroup S with a weight function w into a proper H*-algebra A in terms of w-bounded continuous positive definite A-valued functions on S. A generalization of a well-known result of K. Harzallah is obtained. An earlier conjecture of the author ...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کامل